

Development of Novel Thermoplastic Orthotic Springs Made From Repurposed Materials

William E. Boeing Department of Aeronautics & Astronautics, University of Washington¹, Composite Technology Recycling Center², Fabtech³

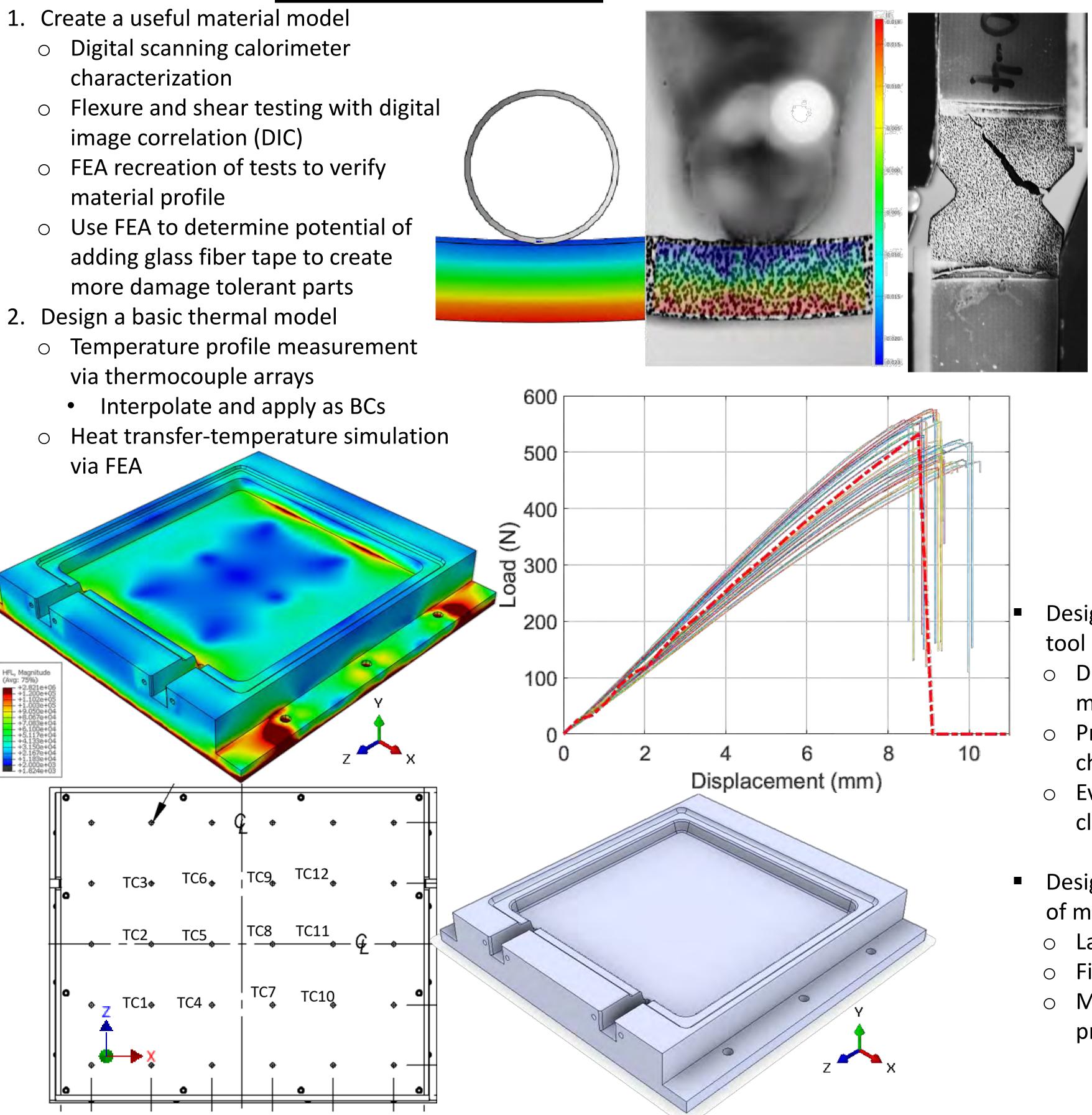
Background

- Recycled fiber reinforced thermoplastic as an alternative material for orthotic springs
 - Lightweight
 - Financially feasible Ο
 - Environmentally friendly Ο
- Thermoplastics are sensitive to heating/cooling rates during the molding process
 - Change in mechanical properties due to
 - Degree of polymerization
 - Crystallinity degree \bullet
 - Chemical degradation

An accurate model of material and heat transfer is Ο the key to uniformity of mechanical characteristics

- There is a need for a more durable and damage tolerant, pseudoductile composite
- SAMPLE OF THOTIC SPRING

Innovation


- Recycled composite fibers
 - Reduce waste by reclaiming used fibers Ο
 - Lower cost compared to virgin fibers Ο
- Compression molding of thermoplastic matrix (Nylon-6)
 - Compared to thermoset matrix (e.g. epoxy): Ο
 - Easier and faster fabrication procedures
 - Lower labor demand
 - Less energy consumption
 - More bio- and chemical-degradable
- Orthotic spring advancement with rCF-Nylon-6
 - Lighter weight and more durable versus metal Ο
 - Much more environmentally conscious than using 0 virgin fibers and/or thermosets

- - Ο
 - Ο
 - Ο
 - Ο
- - Ο

 - via FEA

Collins Davis¹, Jiacheng Chen¹, Ryleigh Weston¹, Guy Houser², Erik Poulin², Greg Mattson³, Marco Salviato¹

Project Description

- Clinical Patients
- Better overall experience Ο
 - Lightweight
 - Comfortable
 - Affordable
 - Durable
- Industry
- Developing new technologies Ο for composite repurposing
- Develop better models for thermoplastic composite processing
- Environment
 - Reclamation of carbon fibers
 - Recycling potential of thermoplastics vs thermosets
 - Reduction of manufacturing energy consumption

Path Forward

Design and fabricate a small, trial orthotic

- Design with inputs from the developed material and thermal models
- Prediction of thermal and mechanical characteristics
- Evaluation via mechanical tests and clinical trial
- Design a 24" x 24" orthotic tool capable of mass production
- Larger format production tool
- Financial feasibility evaluation
- Modification of manufacturing processes